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Outline 

• Notation 
• Inertial navigation 
• Aided inertial navigation system (AINS) 
• Implementing AINS 
• Initial alignment (gyrocompassing) 
• AINS demonstration 
• Extra material: The 7 ways to find heading (link to journal paper) 

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf


Kenneth Gade, FFI Slide 3 

Kinematics 

• Mathematical model of physical world using 
– Point, represents a position/particle (affine space) 
– Vector, represents a direction and magnitude (vector space) 
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Coordinate frame 

• One point (representing position) 
• Three basis vectors (representing orientation) 

 
→ 6 degrees of freedom 
→ Can represent a rigid body 
 
 

A 



Kenneth Gade, FFI Slide 5 

Important coordinate frames 

        longitude, 
latitude, wander 
azimuth 
 
     ,       roll, 
pitch, yaw 

ELR

LBRNBR

Frame 
symbol Description 

I Inertial 

E Earth-fixed 

B Body-fixed 

N 
North-East-
Down (local 

level) 

L 

Local level, 
wander 

azimuth (as N, 
but not north-

aligned => 
nonsingular) 

Figure: Gade (2008) 

(Figure assumes 
spherical earth) 
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General vector notation 

Coordinate free vector (suited for expressions/deductions): 
   
Sum of components along the basis vectors of E (                              ): 
 

x

i
E

j

k

x
x
x

 
 =  
  

x

, , ,i E i j E j k E kx x b x b x b= + +
  



, , ,, ,E i E j E kb b b
  

xk 

E 
xj xi 

x

Vector decomposed 
in frame E (suited 
for computer 
implementation): 
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Notation for position, velocity, acceleration 

Symbol Definition Description 

Position vector. A vector whose length and direction is 
such that it goes from the origin of A to the origin of B. 
Generalized velocity. Derivative of       , relative to 
coordinate frame C. 
Standard velocity. The velocity of the origin of 
coordinate frame B relative to coordinate frame A. (The 
frame of observation is the same as the origin of the differentiated position vector.) 
Note that the underline shows that both orientation and position of A matters 
(whereas only the position of B matters) 

 
 

Generalized acceleration. Double derivative of       , 
relative to coordinate frame C. 

Standard acceleration. The acceleration of the origin of 
coordinate frame B relative to coordinate frame A. 

ABp B A−
 

C
ABv ( )

C

AB
d p
dt



ABv A
ABv

C
ABa

( )
( )

2

2

C

AB
d p
dt



ABa A
ABa

ABp

ABp
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Notation for orientation and angular 
velocity 

Symbol Definition Description 

Angle-axis product.       is the axis of rotation and       is 
the angle rotated. 

(to be 
published) 

Rotation matrix. Mostly used to store orientation and 
decompose vectors in different frames,                                     
                   .  
Notice the “rule of closest frames”. 

(to be 
published) 

Angular velocity. The angular velocity of coordinate frame 
B, relative to coordinate frame A.  

ABθ


AB ABk ⋅β


ABk


ABβ

ABR A B
AB=x R x

ABω

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Outline 

• Notation 
• Inertial navigation 
• Aided inertial navigation system (AINS) 
• Implementing AINS 
• Initial alignment (gyrocompassing) 
• AINS demonstration 
• Extra material: The 7 ways to find heading (link to journal paper) 

 

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf
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Navigation  

Navigation: 
Estimate the position, orientation and velocity of a vehicle 
 
Inertial navigation: 
Inertial sensors are utilized for the navigation 
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Inertial Sensors 

Based on inertial principles, acceleration and angular velocity are 
measured.  

 
• Always relative to inertial space 
• Most common inertial sensors:  

– Accelerometers 
– Gyros 
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Accelerometers (1:2) 

By attaching a mass to a spring, measuring its deflection, we get a 
simple accelerometer.  

 
 
 

 
 
 
 
 
 
 

 

Figure: Gade (2004) 

– To improve the dynamical interval and linearity and also 
reduce hysteresis, a control loop, keeping the mass close to 
its nominal position can be applied. 
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Accelerometers (2:2) 

 
• Gravitation is also measured (Einstein's principle of equivalence) 

 
• Total measurement called specific force, 

 
• Using 3 (or more) accelerometers we can form a 3D specific force 

measurement: 
 
 

 This means: Specific force of the body system (B) relative inertial space (I), decomposed in 
the body system. 

 
Good commercial accelerometers have an accuracy in the order of 50 μg. 

B
IBf

,B gravitation
IB IB B IB

F
f a g a

m
= − = −





  



Kenneth Gade, FFI Slide 14 

Gyros (1:3) 

IBω

Figure: Caplex (2000) 

 
• Maintain angular momentum (mechanical 

gyro). A spinning wheel will resist any change in 
its angular momentum vector relative to inertial 
space. Isolating the wheel from vehicle angular 
movements by means of gimbals and then 
output the gimbal positions is the idea of a 
mechanical gyro. 

Gyros measure angular velocity relative inertial space: 
 
Principles: 
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Gyros (2:3) 

Figure: Bose (1998) 

• The Sagnac-effect. The inertial characteristics of light can also be utilized, by 
letting two beams of light travel in a loop in opposite directions. If the loop 
rotates clockwise, the clockwise beam must travel a longer distance before 
finishing the loop. The opposite is true for the counter-clockwise beam. 
Combining the two rays in a detector, an interference pattern is formed, which 
will depend on the angular velocity.  

The loop can be implemented with 
3 or 4 mirrors (Ring Laser Gyro), or 
with optical fibers (Fiber Optic 
Gyro). 
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Gyros (3:3) 

• The Coriolis-effect. Assume a mass that is 
vibrating in the radial direction of a rotating 
system. Due to the Coriolis force working 
perpendicular to the original vibrating 
direction, a new vibration will take place in 
this direction. The amplitude of this new 
vibration is a function of the angular velocity.  

 MEMS gyros (MicroElectroMechanical 
Systems), “tuning fork” and “wineglass” gyros 
are utilizing this principle.  

 Coriolis-based gyros are typically cheaper 
and less accurate than mechanical, ring laser 
or fiber optic gyros. 

 
   

 
 

Tine 
radial 
vibration 
axis 

 
 

Figure: Titterton & Weston (1997) 
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IMU 

Several inertial sensors are often assembled to form an Inertial 
Measurement Unit (IMU).  

 
• Typically the unit has 3 accelerometers and 3 gyros (x, y and z). 

 
In a strapdown IMU, all inertial sensors are rigidly attached to the unit (no 

mechanical movement). 
 
In a gimballed IMU, the gyros and accelerometers are isolated from 

vehicle angular movements by means of gimbals. 
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Example (Strapdown IMU) 

Honeywell HG1700 ("medium 
quality"): 

 
• 3 accelerometers, accuracy: 1 mg  
• 3 ring laser gyros, accuracy: 1 deg/h  
• Rate of all 6 measurements: 100 Hz 

Foto: FFI 
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Inertial Navigation 

An IMU (giving       and       ) is sufficient to navigate relative to inertial 
space (no gravitation present), given initial values of velocity, position 
and orientation:  
– Integrating the sensed acceleration will give velocity. 
– A second integration gives position. 
– To integrate in the correct direction, orientation is needed. This is 

obtained by integrating the sensed angular velocity. 
 

 

B
IBωfIB

B
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Terrestrial Navigation 

In terrestrial navigation we want to navigate relative to the Earth (E). 
Since the Earth is not an inertial system, and gravity is present, the 
inertial navigation becomes somewhat more complex: 

 
• Earth angular rate must be compensated for in the gyro 

measurements: 
 

• Accelerometer measurement compensations: 
– Gravitation 
– Centrifugal force (due to rotating Earth) 
– Coriolis force (due to movement in a rotating frame) 

 
 

B B B
EB IB IE= −ω ω ω
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Navigation Equations 

Gyros 

Accelero-
meters 

B
IBf

B
IBω

( )
( )2

L B L L L L
EB LB IB B IE IE EB

L L L
IE EL EB

= + − × ×

− + ×

v R f g p

v

 ω ω

ω ω

( ) ( )B L L
LB LB IB IE EL LB= − +R R S S R ω ω ω

( )1L L L
EL EB EB

EBr
= ×n vω ( )L

EL EL EL=R R S ω

Initial attitude 

Initial velocity 

Initial position 

L E
IE LE IE= Rω ω

ELR
ELR

L
EBv

LBRLBR

L
EBv

( )dt∫

( )dt∫

( )dt∫

Assuming: 
• spherical earth 
• wander azimuth L 

 
Not included:  
• vertical direction 
• gravity calculation 
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Inertial Navigation System (INS) 
The combination of an IMU and a computer running navigation equations is 

called an Inertial Navigation System (INS).  
 
 
 
 
 
 
 
 
Due to errors in the gyros and accelerometers, an INS will have unlimited drift in 

velocity, position and attitude. 
 
The quality of an IMU is often expressed by expected position drift per hour (1σ).  
 Examples (classes): 

– HG1700 is a 10 nautical miles per hour IMU. 
– HG9900 is a 1 nautical mile per hour IMU. 

 
 
 
 
Navigation 
Equations 

Gyros 

Accelero-
meters 

Velocity, 

Angular 
velocity, 

Specific 
force, 

INS 

IMU 

Attitude,         or roll/pitch/yaw 

Depth,  z 

Horizontal 
position, 

B
IBf

B
IBω

En

L
EBv

LBR

or longitude/ 
latitude 
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Outline 

• Notation 
• Inertial navigation 
• Aided inertial navigation system (AINS) 
• Implementing AINS 
• Initial alignment (gyrocompassing) 
• AINS demonstration 
• Extra material: The 7 ways to find heading (link to journal paper) 
 

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf
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Aided inertial navigation system 

To limit the drift, an INS is usually 
aided by other sensors that 
provide direct measurements of 
the integrated quantities. 

 
 
Examples of aiding sensors: 
 

Sensor: Measurement: 

Pressure meter Depth/height 

Magnetic compass Heading 

Doppler velocity log             (or         , water) 

Underwater 
transponders 

Range from known 
position 

GPS 

GPS (Doppler shift) 

Multi-antenna GPS Orientation 

B
EBv

E
EBv

pEB
E

B
WBv
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Sensor error models 

Typical error models for IMU, Doppler velocity log and others: 
• white noise 
• colored noise (1st order Markov) 
• scale factor error (constant) 
• misalignment error (constant) 
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Kalman Filter 

A Kalman filter is a recursive algorithm for estimating states in a system.  
 Examples of states: 

– Position, velocity etc for a vehicle 
– pH-value, temperature etc for a chemical process  

Two sorts of information are utilized: 
• Measurements from relevant sensors 
• A mathematical model of the system (describing how the different 

states depend on each other, and how the measurements depend on 
the states) 
 

In addition the accuracy of the measurements and the model must be 
specified. 
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Kalman Filter Algorithm 

Description of the recursive Kalman filter algorithm, starting at t0: 
 
1. At t0 the Kalman filter is provided with an initial estimate, including its uncertainty 

(covariance matrix). 
2. Based on the mathematical model and the initial estimate, a new estimate valid at 

t1 is predicted. The uncertainty of the predicted estimate is calculated based on the 
initial uncertainty, and the accuracy of the model (process noise). 

3. Measurements valid at t1 give new information about the states. Based on the 
accuracy of the measurements (measurement noise) and the uncertainty in the 
predicted estimate, the two sources of information are weighed and a new updated 
estimate valid at t1 is calculated. The uncertainty of this estimate is also calculated.  

4. At t2 a new estimate is predicted as in step 2, but now based on the updated 
estimate from t1.  

. . . 
The prediction and the following update are repeated each time a new measurement 

arrives. 
 
If the models/assumptions are correct, the Kalman filter will deliver 

optimal estimates. 
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Kalman Filter Equations 

State space model: 
 
 
 Initial estimate (k = 0): 
 
 
 State and covariance prediction: 
 
 
 Measurement update (using yk): 
 
 
 Kalman gain matrix: 

( )
( )

1 1 1 , ,

, ,
k k k k k k

k k k k k k

N

N
− − −= +

= +

x x v v 0 V

y D x w w 0 W

Φ 



( ) ( )( )( )0 0 0 0 0 0 0
ˆˆ ˆ ˆ, TE E= = − −x x P x x x x

( )
( )

ˆ
ˆ

k k k k k k

k k k k

= + −

= −

x x K y D x

P I K D P

( ) 1T T
k k k k k k k

−
= +K P D D P D W

1 1

1 1 1 1

ˆ
ˆ

k k k

T
k k k k k

− −

− − − −

=

= +

x x

P P V

Φ

Φ Φ
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Kalman Filter Design for Navigation 

Objective: Find the vehicle position, attitude and velocity with the best 
accuracy possible 

 
Possible basis:  

– Sensor measurements (measurements) 
– System knowledge (mathematical model) 
– Control variables (measurements) 

We utilize sensor measurements and knowledge of their behavior (error 
models). 

 
This information is combined by means of an error-state Kalman filter. 
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Example:  
HUGIN AUV 

DGPS: Differential Global 
Positioning System 

 
USBL: Ultra-Short BaseLine 
 
DVL: Doppler Velocity Log 
 
 

IMU 
Pressure sensor 
Compass  

DVL 
 
 

USBL 
 
 

DGPS 
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Measurements 
To make measurements for 

the error-state Kalman filter 
we form differences of all 
redundant information. 

 This can be done by 
running navigation 
equations on the IMU-data, 
and compare the outputs 
with the corresponding 
aiding sensors. 

 
The INS and the aiding 

sensors have 
complementary 
characteristics. 

Sensor Measurement Symbol 

IMU Angular velocity, specific force  

DGPS/USBL Horizontal position 
measurement 

 
Pressure 
sensor Depth 

DVL 
AUV velocity (relative the 
seabed) projected into the body 
(B) coordinate system 

 

Compass Heading (relative north)  
 

 

,B B
IB IBfω

pEB
E

B
EBv

northψ


		Sensor

		Measurement

		Symbol



		IMU

		Angular velocity, specific force

		



		DGPS/USBL

		Horizontal position measurement

		



		Pressure sensor

		Depth

		



		DVL

		AUV velocity (relative the seabed) projected into the body (B) coordinate system

		



		Compass

		Heading (relative north)
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Aided Inertial Navigation System 

Based on the measurements and sensor error models, the Kalman filter 
estimates errors in the navigation equations and all colored sensor 
errors. 
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Optimal Smoothing 

Smoothed estimate: Optimal estimate based on all logged measurements 
(from both history and future)  

 
Smoothing gives: 
– Improved accuracy (number of relevant measurements doubled) 
– Improved robustness 
– Improved integrity 
– Estimate in accordance with process model 

First the ordinary Kalman filter is run through the entire time series, saving all estimates and covariance 
matrices. The saved data is then processed recursively backwards in time using an optimal smoothing 
algorithm adjusting the filtered estimates (Rauch-Tung-Striebel implementation). 
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Outline 

• Notation 
• Inertial navigation 
• Aided inertial navigation system (AINS) 
• Implementing AINS 
• Initial alignment (gyrocompassing) 
• AINS demonstration 
• Extra material: The 7 ways to find heading (link to journal paper) 

 
 
 

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf
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Practical navigation processing 

Any vehicle with an IMU and some aiding sensors, can use the AINS to 
find its position, orientation and velocity. 

 
Typical implementation:  

Sensors 

Real-time 
navigation 
(Kalman 

filter) 

Guidance & 
control 

Hard disk 

Pos, orientation, 
velocity 

Control 
signals 

Post-processed 
navigation 

(smoothing) 

Pos, orientation, 
velocity 

Vehicle: 

 
• Real-time navigation 
• Post-processed navigation Geo-referencing 

recorded data (e.g. 
map making) 

Post mission 
download 
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NavLab 
NavLab (Navigation Laboratory) is one common tool for solving a variety 

of navigation tasks. 

Simulator (can be replaced by 
real measurements) 

Estimator (can interface with 
simulated or real measurements) 

Trajectory 
Simulator 

IMU Simulator 

Position 
measurement 

Simulator 

Depth 
measurement 

Simulator 

Velocity 
measurement 

Simulator 

Compass 
Simulator 

Navigation 
Equations 

 
Make Kalman 

filter 
measure-

ments 
(differences) 

Error state 
Kalman filter 

Optimal 
Smoothing 

Filtered 
estimates 

and 
covariance 
matrices 

Smoothed 
estimates 

and 
covariance 
matrices 

 
Development started in 

1998 
 
Main focus during 

development: 
– Solid theoretical 

foundation 
(competitive edge) 
 
 

Structure: 
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Simulator 

• Trajectory simulator 
– Can simulate any trajectory 

in the vicinity of Earth 
– No singularities 

 
• Sensor simulators 

– Most common sensors with 
their characteristic errors are 
simulated 

– All parameters can change 
with time 

– Rate can change with time 

Figure: NavLab 
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NavLab Usage 
Main usage: 
1. Navigation system research and development 
2. Analysis of navigation system 
3. Decision basis for sensor purchase and mission planning 
4. Post-processing of real navigation data 
5. Sensor evaluation  
6. Tuning of navigation system and sensor calibration 

 
Vehicles navigated with NavLab:  
 AUVs, ROVs, ships, aircraft, helicopters 

 
Users:  
• Research groups (e.g. FFI (several groups), NATO Undersea 

Research Centre, QinetiQ, Kongsberg Maritime, Norsk Elektro 
Optikk) 

• Universities (e.g. NTNU, UniK) 
• Commercial companies (e.g. C&C Technologies, Geoconsult, 

FUGRO, Thales Geosolutions, Artec Subsea, Century Subsea) 
• Norwegian Navy 
 
 For more details, see www.navlab.net  

http://www.navlab.net/
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Outline 

• Notation 
• Inertial navigation 
• Aided inertial navigation system (AINS) 
• Implementing AINS 
• Initial alignment (gyrocompassing) 
• AINS demonstration 
• Extra material: The 7 ways to find heading (link to journal paper) 

 

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf
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Initial alignment (gyrocompassing) 

Basic problem: 
Find the orientation of a vehicle (B) relative to Earth (E) by means of an 

IMU and additional knowledge/measurements 
 
Note: An optimally designed AINS inherently gyrocompasses optimally. 

However, a starting point must be within tens of degrees due to 
linearizations in the Kalman filter => gyrocompassing/initial alignment 
is treated as a separate problem. 

 
Solution: Find Earth-fixed vectors decomposed in B. One vector gives 

two degrees of freedom in orientation. 
 
Relevant vectors: 
• Gravity vector 
• Angular velocity of Earth relative to inertial space,       IEω
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Finding the vertical direction (roll and 
pitch) 

Static condition: Accelerometers measure gravity, thus roll and pitch are 
easily found 

 
Dynamic condition: The acceleration component of the specific force 

measurement must be found (                      ) 
 
=> additional knowledge is needed 
 
The following can give acceleration knowledge: 
• External position measurements 
• External velocity measurements 
• Vehicle model 

B B B
IB IB B= −f a g
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Finding orientation about the vertical 
axis: Gyrocompassing 

Gyrocompassing: The concept of finding orientation about the vertical 
axis (yaw/heading) by measuring the direction of Earth's axis of 
rotation relative to inertial space 
– Earth rotation is measured by means of gyros 

 
 

IEω
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Gyrocompassing under static condition 

Static condition (             ): 
A gyro triad fixed to Earth will measure 
the 3D direction of Earth's rotation axis 
(               ) Figure assumes x- and y-gyros in 

the horizontal plane: 

– To find the yaw-angle, the down-direction 
(vertical axis) found from the 
accelerometers is used.  

– Yaw will be less accurate when getting 
closer to the poles, since the horizontal 
component of        decreases 
(1/cos(latitude)). At the poles        is 
parallel with the gravity vector and no 
gyrocompassing can be done. 

y-gyro axis 
yaw 

x-gyro axis (vehicle 
heading) 

z-gyro axis 

y-gyro measurement 

z-gyro measurement 

North 

Earth's axis of rotation 

x-gyro measurement 
B Latitude 

0EBω =


B B
IB IE=ω ω

IEω

IEω
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Gyrocompassing under dynamic 
conditions (1:2) 

Dynamic condition: 
• Gyros measure Earth rotation + vehicle rotation, 
• Challenging to find       since        typically is several orders of 

magnitude larger 
 

 
 

 

B B B
IB IE EB= +ω ω ω

B
IEω B

EBω
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Gyrocompassing under dynamic 
conditions (2:2) 
Under dynamic conditions gyrocompassing can be performed if we know 

the direction of the gravity vector over time relative to inertial space. 
– The gravity vector will rotate about Earth's axis of rotation: 

gravity vector at t 
= 0 hours 

gravity vector at t 
= 12 hours 

Earth's axis of rotation Figure assumes zero/low 
velocity relative to Earth.  

 

The change in gravity direction due to 
own movement over the curved 
Earth can be compensated for if 
the velocity is known (4 m/s 
north/south => 1˚ error at lat 60˚) 
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Outline 

• Notation 
• Inertial navigation 
• Aided inertial navigation system (AINS) 
• Implementing AINS 
• Initial alignment (gyrocompassing) 
• AINS demonstration 
• Extra material: The 7 ways to find heading (link to journal paper) 

 
 

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf
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AINS demonstration – NavLab simulation  
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Figures: NavLab 

   

 

 
True trajectory
Measurement
Calculated value from navigation equations
Estimate from real-time Kalman filter
Smoothed estimate
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Position 

Posm white (1σ): 3 m 
Posm bias (1σ): 4 m 
Tbias: 60 s 
Posm rate: 1/60 Hz 
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True trajectory
Measurement
Calculated value from navigation equations
Estimate from real-time Kalman filter
Smoothed estimate

  

 

 
   
   
  

      
   

     
     

  

 

 
      

         
     

    
        

     

Figure: NavLab 
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Position estimation error 

Figure: NavLab 
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Attitude 
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Figure: NavLab 
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Attitude estimation error 
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Figure: NavLab 
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AINS demonstration - real data in NavLab 

• Data from Gulf of Mexico 
• Recorded with HUGIN 3000 
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Position (real data) 
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Figure: NavLab 
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USBL wildpoint (outlier) 
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Figure: NavLab 
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Std North = 1.17 m
Std East = 1.71 m

Verification of NavLab Estimator Performance 

Verified using various 
simulations 

 
Verified by mapping the 

same object repeatedly 

HUGIN 3000 @ 
1300 m depth: 
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Navigating aircraft with NavLab 
• Cessna 172, 650 m height, much turbulence 
• Simple GPS and IMU (no IMU spec. available) 

Line imager data Positioned with NavLab (abs. accuracy: ca 1 m verified) 
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Conclusions 

• An aided inertial navigation system gives:  
– optimal solution based on all available sensors 
– all the relevant data with high rate 

• If real-time data not required, smoothing should always be used to 
get maximum accuracy, robustness and integrity 
 
 

 
 
Next page: Extra material – The 7 ways to find heading 
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Extra material:  
The Seven Ways to Find Heading 

New fundamental navigation theory was published in the following article 
in 2016: 
 

Gade, K. (2016). The Seven Ways to Find Heading,   
The Journal of Navigation, Volume 69, Issue 05, pp 955-970, ©The 
Royal Institute of Navigation, September 2016.  
 
Link to fulltext: 
http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf 

 
The following two slides are taken from that article 

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf
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Navigation systems: Four categories 
Estimating the 6 degrees of freedom: 
• Roll and pitch usually estimated with satisfactory accuracy (due to g-vector) 
• Depth/height often estimated with satisfactory accuracy (e.g. due to 

pressure sensor or surface bound movement) 
• Heading and horizontal position may be challenging: 

Green = Often satisfactory 
Red = Challenging GNSS available NO GNSS available 

Accurate gyros 
(north seeking) 

Category A1: 
Heading 

Horizontal position 
E.g: Large/expensive vehicles 
(ships, aircraft etc.) 

Category A2: 
Heading 

Horizontal position 
E.g: Submarines, expensive 
AUVs (submerged) 

Gyros NOT north 
seeking  
(low-cost, light, small) 

Category B1: 
Heading 

Horizontal position 
E.g: Low-cost systems (UAVs, 
personnel, cameras etc.) 

Category B2: 
Heading 

Horizontal position 
E.g: Indoor nav., underwater 
or GPS-jammed low-cost nav. 

Material taken from: K Gade (2016) The Seven Ways to Find Heading in The Journal of Navigation 

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf
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The Seven Ways to Find Heading 
Common: A vector is measured/found/known  
in both E and B:  

1. Magnetic compass. May be disturbed by: 
– Local deviation (e.g. 15º due to ferromagnetism in the ground) 
– Solar wind (e.g. 30º change in 30 minutes in Tromsø) 
– Own magnetic field (e.g. from electric current) 

2. Gyrocompassing (accuracy ∝1/cos(latitude)) 
– Carouseling/indexing cancels biases 

3. Observing multiple objects with known relative position. E.g.: Star 
 tracker, downward looking camera in UAV, terrain navigation 
4. Measure bearing to object with known position 
5. Multi-antenna GNSS (Sufficient baseline needed) 
6. Vehicle velocity > 0: Measure       (from DVL/camera/laser/radar) and 

position or    
7. Vehicle acceleration > 0: Measure position or  
 

IEω

BOp
1 2O Op

1 2B Bp

EBv

EBa

Material taken from: K Gade (2016) The Seven Ways to Find Heading in The Journal of Navigation 

Accuracy: 
horizontal vector 
length vs noise Required 

vector: 

B
EBv

E
EBv

E
EBv

E B
EB=x R x

Bm

http://www.navlab.net/Publications/The_Seven_Ways_to_Find_Heading.pdf
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